WMATA’S Automated Track Analysis Technology & Data Leveraging for Maintenance Decisions
WMATA System

- 6 Lines: 5 radial and 1 spur
- 234 mainline track miles and 91 stations
- Crew of 54 Track Inspectors and 8 Supervisors walk and inspect each line twice a week.
- WMATA’s TGV and 7000 Series revenue vehicles, provide different approaches to automatic track inspection abilities.
Track Geometry Vehicle (TGV)

- Provides services previously contracted out.
- Equipped with high resolution cameras inspecting ROW and tunnels, infrared camera monitoring surrounding temperatures, and ultrasonic inspection system.
- Measures track geometry parameters, and produces reports where track parameters do not meet WMATA’s maintenance and safety standards.
TGV Measured Parameters

- Track gage, rail profile, cross level, alignment, twists, and warps.
- Platform height and gap,
- 3rd rail: height, gage, missing cover board, and temperature.

• Inspects track circuits transmitting speed commands and signals for train occupancy detection with different carrier frequencies and code rates.
TGV Technology

• Parameters such as rail profile, gage distances, 3rd rail and platform gap distances are measured via laser beam shot across running rails, and platforms.

• High-speed/high-resolution cameras take high resolution images of the surface where lasers makes contact with the rail.
TGV Technology

- Track profile is measured via vertical accelerometers, and an algorithm converting acceleration into displacement.
- Track alignment is measured with a lateral accelerometer in combination with image analysis.
- Warps, twists, and cross levels are measured via gyros and inclinometers, along with distance measurements.
Kawasaki 7000 Series Cars

• Cars are assembled into 4-Pack sets for operation.

• 7K cars are equipped with a system of accelerometers that are mounted on 15% of the B cars.

• Vehicle Track Interaction dynamic monitoring system (V/TI) built by Ensco, with primary purpose to identify poor track conditions & ride quality.

Can also identify truck anomalies on vehicle with the technology installed.
7000 Series Track Analysis

• V/TI is capable of measuring any abrupt lateral or vertical movement affecting the axle, truck, or car body where mounted.

• Data sent wirelessly to end user through commercial wayside cellular towers. Provides alerts in case of extreme exceptions.

• The collected data is marked with track location determined via GPS and the vehicle mounted data system (VMDS).

• Data reviewed via protected web application and/ or strip chart.
V/TL Monitoring System

Figure 1: Vehicle/Track Dynamic Monitoring System
V/TI DATA REPORT

Results

<table>
<thead>
<tr>
<th>ChainMarker</th>
<th>Level</th>
<th>Latitude</th>
<th>Longitude</th>
<th>GPS Speed</th>
<th>ATC Speed</th>
<th>Dir</th>
<th>Car#</th>
<th>Trainset</th>
<th>Date</th>
<th>Value</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>447.03</td>
<td>Near Urgent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41</td>
<td>7005</td>
<td>TestCar</td>
<td>03/12/2015 13:16:55</td>
<td>41236.52</td>
<td>AXV1-PEAK</td>
</tr>
<tr>
<td>447.08</td>
<td>Near Urgent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41</td>
<td>7001</td>
<td>TestCar</td>
<td>03/10/2015 11:19:12</td>
<td>41161.75</td>
<td>AXV1-PEAK</td>
</tr>
<tr>
<td>566.24</td>
<td>Near Urgent</td>
<td>39.030740</td>
<td>-77.104518</td>
<td>39</td>
<td></td>
<td>43</td>
<td>339</td>
<td>7001</td>
<td>03/13/2015 15:06:42</td>
<td>46052.04</td>
<td>AXV1-PEAK</td>
</tr>
<tr>
<td>566.28</td>
<td>Near Urgent</td>
<td>39.030727</td>
<td>-77.104528</td>
<td>37</td>
<td></td>
<td>42</td>
<td>340</td>
<td>7001</td>
<td>03/11/2015 15:15:44</td>
<td>43719.06</td>
<td>AXV1-PEAK</td>
</tr>
<tr>
<td>566.38</td>
<td>Near Urgent</td>
<td>39.030778</td>
<td>-77.104528</td>
<td>39</td>
<td></td>
<td>43</td>
<td>340</td>
<td>7001</td>
<td>03/17/2015 13:28:02</td>
<td>44212.57</td>
<td>AXV1-PEAK</td>
</tr>
<tr>
<td>566.38</td>
<td>Near Urgent</td>
<td>39.030778</td>
<td>-77.104522</td>
<td>39</td>
<td></td>
<td>43</td>
<td>342</td>
<td>7001</td>
<td>03/13/2015 12:44:48</td>
<td>45588.43</td>
<td>AXV1-PEAK</td>
</tr>
<tr>
<td>566.43</td>
<td>Near Urgent</td>
<td>39.030652</td>
<td>-77.104445</td>
<td>36</td>
<td></td>
<td>42</td>
<td>338</td>
<td>7005</td>
<td>03/10/2015 14:12:59</td>
<td>45872.57</td>
<td>AXV1-PEAK</td>
</tr>
<tr>
<td>707.69</td>
<td>Near Urgent</td>
<td>39.064112</td>
<td>-77.122998</td>
<td>47</td>
<td></td>
<td>47</td>
<td>138</td>
<td>7001</td>
<td>03/12/2015 13:07:20</td>
<td>41086.98</td>
<td>AXV2-PEAK</td>
</tr>
<tr>
<td>707.74</td>
<td>Near Urgent</td>
<td>39.063990</td>
<td>-77.122853</td>
<td>48</td>
<td></td>
<td>48</td>
<td>138</td>
<td>7001</td>
<td>03/17/2015 11:10:49</td>
<td>41161.75</td>
<td>AXV2-PEAK</td>
</tr>
<tr>
<td>707.87</td>
<td>Near Urgent</td>
<td>39.064088</td>
<td>-77.122937</td>
<td>48</td>
<td></td>
<td>48</td>
<td>138</td>
<td>7001</td>
<td>03/13/2015 13:06:30</td>
<td>40129.86</td>
<td>AXV2-PEAK</td>
</tr>
</tbody>
</table>

Total no. of records 10
V/T I Technology

• Total of 4 accelerometers in each system. 400 Hz sampling rate:

 - Car body (one) sensing vertical exceptions from poor vehicle suspension, and lateral accelerations from track alignment. (+/- 2g)

 - Truck (one), sensing lateral accelerations and exceptions due to needed truck maintenance. (+/- 5g)

 - End of the axle (two) sensing vertical accelerations due to rail profile issues. (+/- 100g)

 Axle vertical exceptions are typically associated with rail head defects, issues with welds, or joints.
V/TI Equipment Positioning

Figure 4: VTI Equipment Positioning

- Main V/TI Unit
- Carbody Sensor
- Truck Sensor
- Axle Sensors
- Antenna
TGV vs. 7K Measuring Systems

- The two technologies measure track conditions, but differences in detail, scope of analysis, and frequency of measurements set them apart and specify their roles.
- The V/TI is revenue vehicle based, provides extensive and continuous measurement coverage through the railroad. Track surface and vehicle conditions.
- The TGV provides a deep level of inspection and analysis, identifying exceptions in track geometry, rail profile, train control circuits, and infrastructure position.
How Is This Data Used?

- Find the unseen problems (Ultrasonic Testing)
- Monitor the state of the track structure and ride quality
- Forecast wear rates and plan certain track maintenance activities
Corridor Infrastructure Management

Collect > Integrate > Analyze

- Assets Register
- Work: Enterprise Asset Management System (EAM)
- Inspection (Track Walker)
- Automated Condition Assessment

CIM System Aggregated Data

Prioritized Work
Automated Condition Assessment

Automated Condition Assessment Data

- Track Geo
- 3rd Rail Geo
- Tie Condition
- Ultrasonic
- Rail Profile
Track Chart

Station Markers

Track Layout
Rail Profile

Station Markers

Track Layout & Assets

18
Analytics

[Graphs and charts showing data analysis for rail transit]

RAIL TRANSIT SEMINAR • MAY 18, 2015
Analytics

- Raw Data
- Aligned Data
- Rate of Change
Work Prioritization
Work Prioritization
Corridor Infrastructure Management

Automated Condition Assessment

- Track Geo
- 3rd Rail Geo
- Tie Condition
- Ultrasonic
- Rail Profile
QUESTIONS?

Ravi Amin, P.E. – Assistant Chief Engineer (Acting)
WMATA
ramin@wmata.com

Kevin Moore, President
Net Consulting Group, Inc.
Ph: 978-393-0088
Kevin.moore@TheNetConsultingGroup.com