FRA High-Speed Adjustable Perturbation Slab Track

ALI TAJADDINI, PE
TRACK-TRAIN INTERACTION PROGRAM MANAGER
OFFICE OF RESEARCH, DEVELOPMENT, AND TECHNOLOGY
OFFICE OF RAILROAD POLICY AND DEVELOPMENT
Two Primary FRA Offices

Office of Railroad Safety

- Rulemaking and Enforcement
- Rail Safety Improvement Act (2008)
Two Primary FRA Offices (cont)

Office of Railroad Policy and Development

- Obligation and oversight of grants and loans (Amtrak, RRIF, HSIPR, TIGER, etc.)
- National Rail Plan
- Passenger Rail Investment and Improvement Act (2008)
- Research and Development and Technology
OFFICE OF RESEARCH, DEVELOPMENT, AND TECHNOLOGY

Track Research Division
Equipment and Operating Practices Division
Train Control & Communications Division
Human Factors Research Division
TRACK RESEARCH DIVISION

Track – Train Interaction Program
• Derailment Prevention
• Wheel/Rail Interface
• Modeling/Simulations
• Track geometry

Track and Structure Program
• Rail Integrity
• Tie and Fastener Research
• Ballast and Subgrade Research
• Bridge Research

Equipment and Facilities
Vehicle Track Interaction Research

Research in Vehicle/Track Interaction area aims to reduce the risk of derailments and other accidents attributable to the dynamic interaction between the track and the vehicles.
Track-Train Interaction

Research Partners:

Volpe
Railroads
Enesco, TTCI, NRC, KLD, Universities, others

Products:

ATGMS
Visual Joint Bar Inspection System
Ride Meter (VTI, ARMS, rMetrix)
Optimization of Amtrak Wheel/rail Interface
RCFS
High Speed Track Safety Standards

- Safe Limits on Track Structure and “Geometry”
- Trackworthiness Qualification for high speed and high Cant Deficiency
- Monitoring and Inspection
VTI Derailment Criteria

Purpose of Criteria: Vehicle dynamics do not overload track, vehicle, or cause injury to passengers.
Vehicle Qualification

Assess vehicle performance for safety over maximum allowable track geometry perturbations (MCAT).

Performance Criteria

- Static Lean
- On-Track Test
- Excitation Track
- Truck Equalization

Model Validation Scenarios

- Static Lean
- On-Track Test
- Excitation Track
- Truck Equalization

MCAT = Minimally Compliant Analytical Track

Marquis

HEAVY HAUL SEMINAR • MAY 4 - 5, 2016

WRI 2016
FRA Cars in Service

High Speed Research Car
DOTX216 (T-16)

Only 125 mph operation (NEC)

Track Inspection Car (ATIP)
DOTX217 (T-17)

Track Geometry, Ride Quality, Rail Cant, Self propelled capability

Gage Restraint Inspection Car
DOTX218 (T-18)

Only Car with GRMS, Testing speed limited to 50 mph, Rail Cant, Track Geometry, 3D Right-of-Way Scanner, Self propelled capability

Track Inspection Car (ATIP)
DOTX219 (T-19)

Track Geometry, Ride Quality, Rail Cant, Self propelled capability

Track Inspection Car (ATIP)
DOTX220 (T-20)

Track Geometry, Ride Quality, Rail Cant, Towed

Autonomous Track Inspection Car (ATIP)
DOTX221 (T-21)

Ride Quality, Track Geometry, Towed

ATIP Support Vehicle
DOTX223 (T-23)

Storage, Axle count car

University Support
R4

Research Car
High Speed Adjustable Perturbation Test Track

Why Building Test track:

• Need to validate the accuracy of track geometry Measurement systems
 – Current Methods use statistical procedure to evaluate repeatability of measurement system
 – Desired a test facility and procedures to validate the accuracy and repeatability of the system

• Need to provide an utility that can be used for Vehicle model validation with known input.

Asked TTCi to Design and Build the Test Track
FRA’s Transportation Technology Center

- 52 square miles near Pueblo, CO
- ~50 miles of test track
- Max. testing speed – 165 mph
- Laboratories and workshops
- Association of American Railroads has been the Care, Custody and Control contractor since 1982
- Transportation Technology Center, Inc. took over in 1998
HS-APTT

- The testing facility includes the specially designed tie plates adjustable so that a maximum vertical perturbation of 2 inches can be installed while lateral adjustment of 1.5 inches is possible on either rail.
- Specially designed plates and shims allow track geometry deviations with a resolution or accuracy of 1/8 inch.
- In addition, track properties such as resiliency and damping can be adjusted and controlled.
HS-APTT

Lateral Adjustment with Serrated Adjustment Plate.

Lateral Adjustable Tie-Plate

Vertical Assembly Plate

Vertical Assembly Plate Bolt

Vertical Shims

Slab Plate
Construction

Placement of bottom mat rebar on finished subgrade

Tie plate assemblies in place awaiting rail threading. End and rear forms for slab in place.

Threading rail onto temporary tie supports prior to attachment of tie plate assemblies to the rail.
Construction

Iron Horse Engineering casting frame supporting rail and tie plate assemblies for concrete casting

Photos showing top rebar mat and coverage of critical components prior to casting of concrete.

Casting of concrete using a pump
Finished Track
Adjustable Tie plates

Shims are used to adjust the vertical height of the rail.

Tie plates are moved in and out to introduce lateral deviations.
Wayside Instrumentation
Examples of Vertical Perturbations Installed
Perturbation Measurements

- Each set of perturbations was measured using a push cart measurement system and traditional survey measurements to provide “ground truth” for comparison to the TGMS measurements.
- The FRA DOTX-216 track geometry test car was operated over the HS-APTT with the introduced deviations.
- Test runs were made at several different speeds from 15 to 100 mph. Each test speed was repeated 3 times, and in both directions of operation to allow comparisons for repeatability.
Vertical Perturbations and Push Cart Geometry Measurement at HS-APS
FRA Track Geometry Car Testing
Test Sequence

- Completed four track configurations during initial set of testing:
 - Case 1 – No Deviations
 - 48 runs
 - Included clockwise, counter clockwise, forward and reverse runs
 - Test speeds: 20, 40, 80, and 100 MPH
 - Case 2 - Outside 31’ Profile MCO
Test Sequence

- Case 3 – Inside 31’ Profile MCO
 - 72 Runs
 - 20, 30, 40, 60, 80, and 100 MPH
Test Sequence

- Case 4 – Blind:
- 72 Runs
 - 20, 30, 40, 60, 80, and 100 MPH
Closing Remarks

• This test track can be used to accurately create different types of track geometry anomalies at different wavelengths, including surface, gage, alignment, and cross level deviations, and combinations of these types.
• It is designed to test the adequacy of track geometry measuring vehicle accuracy
• Also designed for validating vehicle-track interaction modeling simulations.
Closing Remarks

Next Step:

• Finish more tests with DOTx216 to test lateral deviations
• Write a procedure for testing and validating track Geometry Measurement system
• Test FRA’s cars Annually to verify the accuracy and calibrate the system
• Continue model validation effort using test track
• Recommend a procedure for Vehicle model validation
Questions?

Ali Tajaddini, PE
VTI Program Manager
Email: Ali.Tajaddini@dot.gov
FRA RD &T