Wheel/Rail Interface Optimization: Toronto Transit Commission Program Design & Initial Findings
TTC WRI OPTIMIZATION

Overview

- Project Background
- Project Objectives
- Project Approach
- Project Work Completed
- Project Interim Results
Project Background

TTC WRI OPTIMIZATION
TTC WRI OPTIMIZATION

Project Background

- TTC Recognized several opportunities for improvements on its subway and LIM systems
 - Wheel life being dominated by the slid flats
 - Non-optimal lubrication
 - Rail surface damage on Subway and SRT (Lim System)
 - RCF, Corrugation, Rail Wear
 - Wheel/Rail Noise
TTC WRI OPTIMIZATION

Project Background

- Treat the issues as being related instead of treating each separately
- **Attack project as a team with complete participation and active involvement of all departments**
Project Objectives

TTC WRI OPTIMIZATION
TTC WRI OPTIMIZATION

• Project Objectives

✓ Reduce System Noise
✓ Improve Wheel Life
✓ Minimize and Control Rail Surface Damage
✓ Improve System Lubrication Network
Project Approach

TTC WRI OPTIMIZATION
TTC WRI OPTIMIZATION

Project Objectives:

- ARM developed a project based around a systems approach with the Wheel/Rail Interface at its core.
TTC WRI OPTIMIZATION

- Project Approach:
 - Inspection of Existing Conditions
 - Education of Staff
 - Measure acoustics across system
 - Assess compatibilities of Wheel & Rail Profiles
 - Evaluate current state of Friction Management
 - Develop a Maintenance & Monitoring Plan
TTC WRI OPTIMIZATION

System Assessment/Maintenance & Monitoring

Wheel/Rail Profile Compatibility

System Noise

Friction Mgt

ARM

Project

Team

Don Eadie

RAIL TRANSIT SEMINAR • MAY 2, 2016
Work Completed

TTC WRI OPTIMIZATION
TTC WRI OPTIMIZATION

• Vehicle Inspection

Axle Alignment

Wheel Truing

Wheel Condition
TTC WRI OPTIMIZATION

• Track Inspection

- Corrugations
- Restraining Rail Wear
- RCF
TTC WRI OPTIMIZATION

• Lubrication Review

Flange Lubricator Efficacy

Reservoir Condition

Grease Application
TTC WRI OPTIMIZATION

• Education
 – WRI Principles Course
 – 4 One Day Classes
 – Nearly 100 Attendees
TTC WRI OPTIMIZATION

Acoustic Measurement Setup

Radar Speed
MIC
Laptop
Power/DAQ
Example Acoustic Measurements

- Awt, dBA
- TCI, decibels
- Speed, kph

770 Hz \rightarrow 23 mm=0.9”

Track joints (every 39’)

Distance from Platform, ft
TTC WRI OPTIMIZATION

Reporting Based on Acoustic Measurements
Including Grinding Priority Report
TTC WRI OPTIMIZATION

• Wheel/Rail Profile Analysis
TTC WRI OPTIMIZATION

• Wheel/Rail Profile Analysis
Project Interim Results

TTC WRI OPTIMIZATION
TTC WRI OPTIMIZATION

• Wayside Lubrication Opportunities for Improvement
 – Large reservoir tanks where the grease may sit more than a year
 – Lubricator placement in curves
 – Older equipment that lacks accuracy to control grease application compared to current technology
TTC WRI OPTIMIZATION

• Recommended Gage Face Lubricator Actions
 – Standardization of equipment
 – Proper placement of lubricator in curves
TTC WRI OPTIMIZATION

• Vehicle Mounted Lubricator Opportunities for Improvement
 – Current mounting locations provide insufficient wheel flange coverage

• Solid Stick Applicator
TTC WRI OPTIMIZATION

• Recommended Train Mounted Friction Management
 – Solid Sticks Placed Optimally Throughout Trainset

Solid Stick Applicator
TTC WRI OPTIMIZATION

• Top of Rail Friction Control
 – Reduce rate of RCF occurrence and growth
 – Reduce rate of corrugation occurrence and growth
• Acknowledgements
 – Toronto Transit Commission
 – National Research Council Canada
 – ATS Consulting
 – Don Eadie