Vision Based Wheel Condition Monitoring

Kambiz Nayebi
Beena Vision Systems, Inc.
Condition Based Maintenance
Benefits for the Industry

- High Availability of Rolling Stock
- Optimum use of personnel for Maintenance
- Preventative Maintenance
- Need Based Maintenance vs Time based Maintenance
- Minimizing Timely and Unscheduled Maintenance to Prevent Adverse Impact on Operation
- Monitoring Leading Indicators
- General Fleet Weakness and Failure Point Detection
- Cost Savings
- Reduce Risk to Personnel / Increased Safety
Industry Expectations from TCM systems
Reduced Cost with Higher Reliability, Freight vs Passenger

Operations Consideration
• Painless Operation
• Reliability
• Availability
• Verifiability
• High Enough Accuracy
• High Data Quality
• Actionable Information

Business Considerations
• Inspection of Rolling Stock Using Technology
• Predict and Prevent Failures
• Move Hard Decision Away from the Maintenance Crew
• Minimize Depot Maintenance Visits
• Use Labor to Repair
• Drive Planning and the Supply Chain through CM
• Prevent Disasters
Main Wayside Detector Types
From 40’s to 2101’s and Future

Wayside Detectors have been deployed since early 1950’s with first talkers at 60’s

- GEN 1: Hotbox/Hot Wheel (1950’s with IR Detectors)
- GEN 2: WILD and Acoustic Bearing Detectors (1980’s)
- GEN 3: Wheel Profile Measurement (Early 2000’s)
- GEN 4: Brake Shoe and simpler Image Based Systems (2000’s)
- GEN 5: Vision Based Inspection Systems (2010’s)
- Next Generation: Full Vision Inspection along with Multispectral/Thermal/3D aligned with other non-contact sensing technologies

There has been some attempts to bring Ultrasonic, EMAT, X-Ray, Thermal, Radar, Lidar and other NDT techniques to mainline wayside detection systems.
Characteristics of Vision Based Systems
Cameras to Improve Inspector Eyes

- **Versatility**: Cameras see a Whole Lot
- **Fast**: Sophisticated Inspections at Speed
- **Easy Verification**: Verification is Usually Very Easy with Access to Images
- **Data Presentation**: Intuitive with Combination of Data and Images
- **Processing Categories**: Measurements vs. Inspections (Detection)
- **System Categories**: Component Specific to Area Specific Imaging
- **Capabilities**: Complex and Accurate Measurements/Inspections
Characteristics of Vision Based Systems

Complexities of Vision Based Systems

- **High Computational Complexity**: Demand for High Computational Power
- **Development Time**: Sophisticated Vision Algorithms Takes Time to Mature
- **Large Data Volume**: GBytes of Data per Train
- **Power**: Some Systems are Power Hungry
- **Availability**: Keeping Systems Fully Operational 24/7
- **Ambient Light is the Main Enemy**: Only a Well Designed System Can do the Job
- **Not as Easy as it may Look!**
A Typical US Vision Detector Site

Usually Multiple Sensors are Installed in One Location
In this site systems that are installed listed from left to right: Coupler Inspection System, Undercarriage Inspection System, Wheel Profile Measurement, Brake Shoe Measurement, and Truck Inspection Systems
A Typical Western Australian Site

Usually Multiple Tracks are Equipped with Detectors
This is a double track site with several systems installed on each track.
A Typical Passenger Train Inspection Site

A Typical Successful Example

- Wheel Profile and Brake Pad Units Installed
- Painless Operation for 5 years
- Very Reliable
- More than 99.9% Availability
- Yearly Verification
- Accuracy to the Level of 0.2mm
- High Quality Data
- Replaced Manual Measurement for Daily Maintenance
- Operates on Different Types of Rolling Stock

Helsinki, Finland Passenger Train Operation
Different Vision System Types (1)

Laser Based Systems

- Wheel Profile Measurement
- Total Wheel Inspection
- Brake Pad/Shoe Measurement
Different Vision System Types (2)

Pure Image Based Systems

Brake Shoe Measurement

Bogie (Truck) Inspection

Undercarriage Inspection
Different Vision System Types (3)
Laser/3D/Image/Thermal Imaging Based Systems

- Pantograph Inspection
- Total Train Inspection
- Brake Disk Measurement
Typical Images from Different Systems
Real Images from Real Systems
Complete Optical Wheel Inspection
Full Wheel Inspection Station
Static and Dynamic Wheel Measurements

STATIC
- Wheel Profile
- Wheel Diameter
- Wheel Equivalent Conicity
- Wheel Surface Defect
- Wheel Plate Inspection
- Broken Wheel Sections
- Externally Visible Cracks
- Internal Defects and Cracks

DYNAMIC
- Wheel Hunting
- Angle of Attack
- Back to Back
- Wheel Surface Temperature
Wheel Profile Measurement

WheelView

Standard Measurements
- Flange Height
- Flange Thickness
- Flange Slope
- Tread Hollow
- Rim Thickness
- Back-to-Back
- Tread Rollover
- False flange
- Tracking Position
- Wheel Diameter (Option with WV-F/I/D)

Typical Accuracy
- Flange Height, Thickness, Hollow:
 - General accuracy: ±0.5mm
 - Low speed depot: ±0.3mm
- B2B: ±1.0mm
- Rim Thickness: ±1.0mm
- Diameter: ±2.5mm
Wheel Profile Measurement
Raw Images from WVF
Measure Wheel Profile
Full End to End Profile
Wheel Profile Measurement

Flange Thickness Measurement

<table>
<thead>
<tr>
<th>Measure</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flange Thickness Meas.</td>
<td>0.13</td>
</tr>
<tr>
<td>Flange Height Meas.</td>
<td>1.03</td>
</tr>
<tr>
<td>Flange Height Diff.</td>
<td>0.04</td>
</tr>
<tr>
<td>Flange Length Meas.</td>
<td>0.04</td>
</tr>
<tr>
<td>Flange Width Meas.</td>
<td>0.04</td>
</tr>
<tr>
<td>Flange Length Diff.</td>
<td>0.04</td>
</tr>
<tr>
<td>Flange Width Diff.</td>
<td>0.04</td>
</tr>
<tr>
<td>Flange Depth Meas.</td>
<td>0.04</td>
</tr>
<tr>
<td>Flange Depth Diff.</td>
<td>0.04</td>
</tr>
<tr>
<td>Flange Circumference Meas.</td>
<td>0.04</td>
</tr>
<tr>
<td>Flange Circumference Diff.</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Flange Thickness trend showing:

- **Flange Thickness** trend showing a consistent value with slight variations.
- **Flange Height** and **Flange Width** also show similar trends.

Graph:

[Graph showing flange thickness measurement trends]

Image:

[Image of measurement software interface showing data tables and graphs]
From *Wheel Profile and Impact* to *Wheel Condition*

- Wheel profiles are measured at one or few points on the wheel.
- In wheel profile measurement systems, inherent assumption is that wheel wear is uniform.
- Impact measurement systems have an inherent assumption that the contact patch is on the defective part of the wheel and impact measurement can detect it.
- Even so, many condemnable wheel defects may not have significant wheel impact.
- Impact measurement requires a minimum speed of travel.
- Many catastrophic wheel failures do usually either start with small surface defects or demonstrate themselves as an anomaly on the wheel surface.
- **Optical Wheel Surface Inspection** has turned out to be a viable solution that can fill in the gaps.
Wheel Surface Scanning Operation
A Wheel Inspection Station

TreadView and WheelView
This site was developed to evaluate the performance of a fully automated wheel condition monitoring system. This site sees up to 60 trains a day.
Wheel Inspection in a Freight Track

TreadView
BNSF Installation of TreadView
Full Surface Condition Monitoring
Static Wheel Measurements

- **Wheel Surface Defects**
 - Shelling
 - Spalling
 - Dents
 - Flats
 - Fatigue Cracks
 - Out of Round
 - Built-up tread

- Grooves
- Broken and Separated Sections
- Externally Visible Cracks
- Shattered Rim
- Wear Variation along the wheel surface
- Significant Spread Rim
- Vertical Split Rim
Sample Wheel Defects
Detectable with TreadView

- Dent
- Built-up
- Shattered
- Shelled
- Spalled
- Skid Flat
More Defective Wheels
Built-up and Broken Rim

Built-Up Tread
Broken Rim
A Full Vision Based Wheel Inspection Station

TreadView and WheelView

With this station, the task of Wheel Inspection is completely eliminated from the shop floor. Wear, Tread, and Plate condition monitoring are all performed automatically.

HEAVY HAUL SEMINAR • JUNE 7-9, 2017

BeenaVision
A TRIMBLE COMPANY

WRI 2017
Full Wheel Inspection System
TreadView

Standard Measurements
• Shelled/Spalling/RCF Wheel
• Flat Wheel (Skid, Localized Collapse, Polygonazation)
• Built-up Tread
• Wheel Profile Variation
• Wheel OOR
• Missing/Broken/Shocked Flange/Tread
• Tread Groove
• Angle of Attack and Wheel Hunting

Typical Accuracy
• Out of Round : ±0.25mm
• Wheel Surface Defects:
 – Lateral : ±0.1mm
 – Longitudinal: ± 1mm
 – Depth: ±0.2mm
• Longitudinal for low speed depot: ±0.3mm
Perfect Wheel
Hollow Wheel
Measured Across the Whole Wheel
Flat Wheel
Size and Depth are Measured
A Sample 3D Map of a Defective Wheel

Shelling
TreadView Surface Defect
A Detected Shell Example
3D Wheel Surface Data
A Shell is detected on the wheel surface
Another Wheel Surface Defect
Shelled/Spalled/Built-up Tread Wheel Detection
Wheel Surface Imaging
Visual Inspection
Visual Inspection of Wheel Flats

Automatic Detection and Size Evaluation
Out of Round Measurement

Graph from Manual measurements:
- 35 mm length
- 139 mm length
- 80 mm length
- 68 mm length

Graph from TRDV:
- 0.46 mm depth
- 0.50 mm depth
Broken Wheel and its Detection Model
Wheel Surface Representation
Color Depth Display

![Diagram of wheel surface representation with color depth display, showing flange wall and tread wall with numerical scale for mm and degrees.](image)
Cracked/Broken Wheel Plate

Use Wheel Plate Images
Conclusion
Wayside Detectors and Vision Based Condition Monitoring Systems,

- Role of Wayside Condition Monitoring Systems in the Railroad Industry has become pronounced in the last two decades.
- Vision Based Inspection Systems is now playing a significant role in this sector.
- Wheel Inspection technology has reached to a mature state where a full inspection of the wheel is possible at full track speed.
- Vision Based CM systems are irreversibly changing railroad maintenance operations worldwide.
- Acknowledgements: BNSF Railway
Thank You / Questions

Kambiz Nayebi
Beena Vision Systems Inc.
Phone: +1 (678) 597-3156
E-Mail: knayebi@beenavision.com